• Users Online: 326
  • Print this page
  • Email this page
Year : 2017  |  Volume : 3  |  Issue : 4  |  Page : 15-20

The total flavonoids of Clerodendrum bungei suppress A549 cells proliferation, migration, and invasion by impacting Wnt/β-Catenin signaling

1 Department of Traditional Chinese Material Medica, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
2 Department of Clinical Pharmacology, Hunan Academy of Chinese Medicine, Changsha 410006, China

Correspondence Address:
Hao Tang
Hunan Academy of Chinese Medicine, Changsha 410006
Prof. Ke-Jian Zhu
Hunan Academy of Chinese Medicine, Changsha 410006
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/wjtcm.wjtcm_18_17

Rights and Permissions

Objectives: The objective of this study is to evaluate the effect of the total flavonoids of Clerodendrum bungei (TFCB) on the proliferation, invasion, and metastasis of A549 lung cancer cells through the Wnt signaling pathway. Materials and Methods: A549 cells were transfected with a β-catenin overexpression plasmid and the empty vector pcDNA3.1. The A549 cells were divided into six groups: normal A549 cell group, normal A549 cells with TFCB group, vector control group, vector with TFCB group, β-catenin overexpression group, and β-catenin with TFCB group. We used the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay to detect cell proliferation, a scratch test was used to observe cell migration, and a transwell experiment was employed to evaluate cell invasion. Proteins related to the Wnt pathway were detected with Western blot analysis, including β-catenin, GSK-3 β, P-GSK-3 β, c-Myc, and CyclinD1. Results: The proliferation, invasion, and metastasis of A549 cells were significantly enhanced after being transfected with the β-catenin overexpression plasmid (P < 0.05 or 0.01), accompanied by increased expression of β-catenin, C-Myc, CyclinD1 and reduced expression of Gsk-3 β and P-GSK-3 β. Treatment of cells with TFCB resulted in inhibition of cell proliferation, migration, and invasion; downregulated expression of β-catenin, C-Myc, and CyclinD1; and upregulated expression of GSK-3 β and P-GSK-3 β, especially in the β-catenin overexpression group. Conclusion: TFCB has the potential to inhibit the Wnt/β-catenin pathway by prohibiting the overexpression of β-catenin and regulating its downstream factors.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded382    
    Comments [Add]    
    Cited by others 3    

Recommend this journal